Acta Cryst. (1952). 5, 851

A high-temperature crystal modification of KO₂. By GILES F. CARTER, JOHN L. MARGRAVE* and DAVID H. TEMPLETON, Radiation Laboratory and Department of Chemistry and Chemical Engineering, University of California, Berkeley, California, U.S.A.

(Received 17 July 1952)

Recent observations (Carter, 1952) have indicated that crystals of NaO₂ undergo transitions at low temperatures from the random cubic structure proposed by Dauben & Templeton (1950) to ordered structures more similar to the tetragonal room-temperature form of KO₂ (Kassotoschkin & Kotow, 1936). Samples of KO₂ sealed in glass capillaries were studied in high-temperature diffraction cameras at temperatures up to 150° C. to see

1. Diffraction	data for KO ₂ (ci	ubic form)
Cu $K\alpha$ radia	tion; $\lambda = 1.5418$	Å
Ic	Io	d (Å)
4.9	5.4	3.50
41 ·0	41	3.04
17.3	14	2.16
5.8	4.5	1.83
4.8	4.5	1.76
1.3	_	
$3 \cdot 2$	3.2*	1.40
3.1	3.2*	1.36
$2 \cdot 3$	_	
0.6		
2.8	_	
0.8		
	1. Diffraction Cu K α radia: I_c 4.9 41.0 17.3 5.8 4.8 1.3 3.2 3.1 2.3 0.6 2.8 0.8	1. Diffraction data for KO_2 (cr Cu Ka radiation; $\lambda = 1.5418$ I_c I_o 4.9 $5.441.0$ 4117.3 145.8 $4.54.8$ $4.51.3$ -3.2 $3.2*3.1$ $3.2*2.3$ $-0.62.8$ -0.8 $-$

* Near limit of detection.

if a transition might be observed. X-ray powder patterns were obtained which indicate that a transition does occur in the region $60-100^{\circ}$ C. to a cubic form. This transition

* Atomic Energy Commission Postdoctoral Fellow 1951-52.

Acta Cryst. (1952). 5, 851

X-ray diffraction study of limonite. By D. R. DASGUPTA and J. C. MAITRA, Indian Association for the Cultivation of Science, Calcutta 32, India.

(Received 28 July 1952)

Standard books on mineralogy (Dana & Hurlbut, 1947, p. 208; Read, 1946, p. 463; Rogers & Kerr, 1942, p. 206) describe limonite as amorphous. It is a hydrated oxide of iron and is, according to Alexander (1931), mainly an aged gel. Accordingly one might except it to be of crystalline nature. However, no X-ray diffraction study of natural limonite has yet been reported. Products obtained by heating limonite to high temperatures were studied by Endô (1936) by the X-ray diffraction method but it is not known what those products are or whether they contain limonite. The present study has been undertaken to elucidate the atomic structure of limonite.

A sample of limonite from Gosalpur (Jubbulpur) was powdered and a rod of diameter less than 0.5 mm. was made with collodium as a binder. The rod was mounted on the axis of a cylindrical camera. X-rays from a Hadding tube fitted with iron anticathode and run at about 50 kV. and 5-7 mA. were used. The powder diagram gave the spacings d shown in Table 1. The sample was studied spectroscopically and the spectrogram revealed the preis not rapidly reversible since the high-temperature form may be easily quenched to room temperature to give a mixture of the cubic and tetragonal forms.

From the data obtained one may calculate $a = 6 \cdot 09 \pm 0 \cdot 01$ Å for this new phase. Values for the interplanar distances, d, and intensities, as observed visually and as calculated, are given in Table 1. The unit-cell volume is 226 Å³ as compared with 220 Å³ ($a = 5 \cdot 71$ Å, $c = 6 \cdot 76$ Å) for the tetragonal form.

The observed intensities are in good agreement with those calculated for a NaCl-type structure having an $O_2^$ in each halide position with disorderly orientation, like structure (3) proposed for the room-temperature form of NaO₂ (Dauben & Templeton 1950). If the O_2^- are ordered, then a few extra lines should be above the limit of detection, though not by large factors, while the intensities of the observed lines are not changed significantly. Thus the disordered structure seems more probable.

This research was supported by the United States Atomic Energy Commission.

References

- CARTER, G. F. (1952). Dissertation, University of California, Berkeley.
- DAUBEN, C. H. & TEMPLETON, D. H. (1950). J. Amer. Chem. Soc. 72, 2251.
- KASSOTOSCHKIN, W. & KOTOW, W. (1936). J. Chem. Phys. 4, 458.

Table 1. Spacings and intensities of powder lines

θ	d (Å)	Intensity
11° 18′	4.937	w
13° 18′	4.205	vs
13° 43′	4.080	vw
16° 31'	$3 \cdot 402$	w
20° 50′	2.719	ms
22° 59'	$2 \cdot 414$	8
25° 9'	2.276	\boldsymbol{w}
25° 50'	$2 \cdot 220$	w
28° 22'	2.035	vw
31° 58′	1.827	vw
33° 24'	1.758	ms
35° 13′	1.681	vw
36° 39'	1.620	vw
37° 45'	1.580	w
39° 9'	1.531	w
41° 18′	1.466	17117
42° 24'	1.434	าน
44° 33′	1.378	117
46° 21'	1.343	10

Identical X-ray diffraction patterns were obtained from powders of a sample of limonite from Nepal and another from Alabama, U.S.A. This clearly shows that natural limonites are crystalline although incapable of forming single crystals of apprecible size. Further studies are being undertaken.

We thank Prof. K. Banerjee, Sircar Professor of Physics, Indian Association for the Cultivation of Science, Jadavpur, Calcutta, for his inspiring guidance and Prof. N. N. Chatterjee, Head of the Department of Geology, Calcutta University for the samples of limonite.

References

ALEXANDER, J. (1931). Colloid Chemistry. New York: Reinhold.

DANA, E.S. & HURLBUT, C.S. (1947). Manual of Mineralogy. New York: Wiley.

ENDÔ, K. (1936). Sci. Rep. Tôhoku Univ. 25, 913.

- READ, H. H. (1946). Elements of Mineralogy. London: Murby.
- ROGERS, A. F. & KERR, P. F. (1942). Optical Mineralogy. New York: McGraw-Hill.

Acta Cryst. (1952). 5, 852

A refinement of the crystal and molecular structures of naphthalene and anthracene. By F. R. AHMED and D. W. J. CRUICKSHANK, Chemistry Department, The University, Leeds 2, England

(Received 31 July 1952)

Very complete redeterminations of the crystal and molecular structures of naphthalene (Abrahams, Robertson & White, 1949 a, b)

and of anthracene (Mathieson, Robertson & Sinclair, 1950; Sinclair, Robertson & Mathieson, 1950)

have been described recently. In these investigations the carbon co-ordinates were determined from triple Fourier series of observed structure factors evaluated at points throughout the unit cell. No attempt was made to correct the results for the effects of finite series, which were expected to be small; though in the three-dimensional analysis of the hydrocarbon dibenzyl (Jeffrey, 1947) the effects were shown to produce bond-length errors as large as 0.037 Å (Cruickshank, 1949). A detailed estimate of the accuracy of the results is also desirable for the comparison of the experimental bond lengths with quantum-mechanical calculations of Coulson, Daudel & Robertson (1951).

We have now made finite-series corrections to the naphthalene and anthracene bond lengths by Booth's (1945, 1946 a) back-correction method. Differential syntheses (Booth, 1946 b) were computed with the observed and calculated structure factors given by Robertson and his co-workers, all six second differentials being computed for each atom. From these syntheses

new atomic positions were found, from which the bond lengths given in Tables 1 and 2 were derived. The results of Robertson *et al.* are given for comparison. The finiteseries corrections average 0.0058 Å per co-ordinate for each molecule, about half that for dibenzyl. The estimated standard deviations (e.s.d.) of the bond lengths are also shown in Tables 1 and 2, and were calculated by Cruickshank's (1949) method using $|F_o - F_c|$ as an estimate of $\sigma(F)$. The chemically equivalent but crystallographically non-equivalent bonds all agree within the e.s.d.'s, and so weighted mean estimates of the chemically independent bonds may be derived. These are given in Tables 3 and 4,

Table 1. Bond lengths in naphthalene

Bond	$\mathbf{Present}$	E.s.d.	$\begin{array}{c} \text{Robertson} \\ \textit{et al.} \end{array}$
AB	1·369 Å	0·010 Å	1·363 Å
BC	1.426	0.007	1.421
CD	1.424	0.009	1.420
DE	1.362	0.008	1.354
AE'	1.404	0.009	1.395
CC'	1.393	0.010	1.395

Table 2. Bond lengths in anthracene

Bond	$\mathbf{Present}$ $\mathbf{refinement}$	E.s.d.	Robertson et al.
AB	1·365 Å	0·009 Å	1·361 Å
BC	1.428	0.007	1.426
CD	1.393	0.007	1.387
DE	1.398	0.006	1.395
EF	1.418	0.008	1.412
FG	1.375	0.007	1.366
AG'	1.408	0.010	1.390
CE'	1.436	0.007	1.440

together with their e.s.d.'s (allowance has been made for the negative correlation of the lengths of BC and CDin naphthalene through the common atom C, and similarly for CD and DE in anthracene).

Tables 3 and 4 also give the theoretical bond lengths according to the molecular orbital calculations of Coulson